summaryrefslogtreecommitdiffstats
path: root/src/video_core/gpu.cpp
blob: 33431f2a0ffe41d28fe0e5c36c92231d1b7eb1e8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <array>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <list>
#include <memory>

#include "common/assert.h"
#include "common/microprofile.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/frontend/emu_window.h"
#include "core/hardware_interrupt_manager.h"
#include "core/hle/service/nvdrv/nvdata.h"
#include "core/perf_stats.h"
#include "video_core/cdma_pusher.h"
#include "video_core/dma_pusher.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/kepler_memory.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/gpu.h"
#include "video_core/gpu_thread.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_base.h"
#include "video_core/shader_notify.h"

namespace Tegra {

MICROPROFILE_DEFINE(GPU_wait, "GPU", "Wait for the GPU", MP_RGB(128, 128, 192));

struct GPU::Impl {
    explicit Impl(GPU& gpu_, Core::System& system_, bool is_async_, bool use_nvdec_)
        : gpu{gpu_}, system{system_}, memory_manager{std::make_unique<Tegra::MemoryManager>(
                                          system)},
          dma_pusher{std::make_unique<Tegra::DmaPusher>(system, gpu)}, use_nvdec{use_nvdec_},
          maxwell_3d{std::make_unique<Engines::Maxwell3D>(system, *memory_manager)},
          fermi_2d{std::make_unique<Engines::Fermi2D>()},
          kepler_compute{std::make_unique<Engines::KeplerCompute>(system, *memory_manager)},
          maxwell_dma{std::make_unique<Engines::MaxwellDMA>(system, *memory_manager)},
          kepler_memory{std::make_unique<Engines::KeplerMemory>(system, *memory_manager)},
          shader_notify{std::make_unique<VideoCore::ShaderNotify>()}, is_async{is_async_},
          gpu_thread{system_, is_async_} {}

    ~Impl() = default;

    /// Binds a renderer to the GPU.
    void BindRenderer(std::unique_ptr<VideoCore::RendererBase> renderer_) {
        renderer = std::move(renderer_);
        rasterizer = renderer->ReadRasterizer();

        memory_manager->BindRasterizer(rasterizer);
        maxwell_3d->BindRasterizer(rasterizer);
        fermi_2d->BindRasterizer(rasterizer);
        kepler_compute->BindRasterizer(rasterizer);
        kepler_memory->BindRasterizer(rasterizer);
        maxwell_dma->BindRasterizer(rasterizer);
    }

    /// Calls a GPU method.
    void CallMethod(const GPU::MethodCall& method_call) {
        LOG_TRACE(HW_GPU, "Processing method {:08X} on subchannel {}", method_call.method,
                  method_call.subchannel);

        ASSERT(method_call.subchannel < bound_engines.size());

        if (ExecuteMethodOnEngine(method_call.method)) {
            CallEngineMethod(method_call);
        } else {
            CallPullerMethod(method_call);
        }
    }

    /// Calls a GPU multivalue method.
    void CallMultiMethod(u32 method, u32 subchannel, const u32* base_start, u32 amount,
                         u32 methods_pending) {
        LOG_TRACE(HW_GPU, "Processing method {:08X} on subchannel {}", method, subchannel);

        ASSERT(subchannel < bound_engines.size());

        if (ExecuteMethodOnEngine(method)) {
            CallEngineMultiMethod(method, subchannel, base_start, amount, methods_pending);
        } else {
            for (std::size_t i = 0; i < amount; i++) {
                CallPullerMethod(GPU::MethodCall{
                    method,
                    base_start[i],
                    subchannel,
                    methods_pending - static_cast<u32>(i),
                });
            }
        }
    }

    /// Flush all current written commands into the host GPU for execution.
    void FlushCommands() {
        rasterizer->FlushCommands();
    }

    /// Synchronizes CPU writes with Host GPU memory.
    void SyncGuestHost() {
        rasterizer->SyncGuestHost();
    }

    /// Signal the ending of command list.
    void OnCommandListEnd() {
        if (is_async) {
            // This command only applies to asynchronous GPU mode
            gpu_thread.OnCommandListEnd();
        }
    }

    /// Request a host GPU memory flush from the CPU.
    [[nodiscard]] u64 RequestFlush(VAddr addr, std::size_t size) {
        std::unique_lock lck{flush_request_mutex};
        const u64 fence = ++last_flush_fence;
        flush_requests.emplace_back(fence, addr, size);
        return fence;
    }

    /// Obtains current flush request fence id.
    [[nodiscard]] u64 CurrentFlushRequestFence() const {
        return current_flush_fence.load(std::memory_order_relaxed);
    }

    /// Tick pending requests within the GPU.
    void TickWork() {
        std::unique_lock lck{flush_request_mutex};
        while (!flush_requests.empty()) {
            auto& request = flush_requests.front();
            const u64 fence = request.fence;
            const VAddr addr = request.addr;
            const std::size_t size = request.size;
            flush_requests.pop_front();
            flush_request_mutex.unlock();
            rasterizer->FlushRegion(addr, size);
            current_flush_fence.store(fence);
            flush_request_mutex.lock();
        }
    }

    /// Returns a reference to the Maxwell3D GPU engine.
    [[nodiscard]] Engines::Maxwell3D& Maxwell3D() {
        return *maxwell_3d;
    }

    /// Returns a const reference to the Maxwell3D GPU engine.
    [[nodiscard]] const Engines::Maxwell3D& Maxwell3D() const {
        return *maxwell_3d;
    }

    /// Returns a reference to the KeplerCompute GPU engine.
    [[nodiscard]] Engines::KeplerCompute& KeplerCompute() {
        return *kepler_compute;
    }

    /// Returns a reference to the KeplerCompute GPU engine.
    [[nodiscard]] const Engines::KeplerCompute& KeplerCompute() const {
        return *kepler_compute;
    }

    /// Returns a reference to the GPU memory manager.
    [[nodiscard]] Tegra::MemoryManager& MemoryManager() {
        return *memory_manager;
    }

    /// Returns a const reference to the GPU memory manager.
    [[nodiscard]] const Tegra::MemoryManager& MemoryManager() const {
        return *memory_manager;
    }

    /// Returns a reference to the GPU DMA pusher.
    [[nodiscard]] Tegra::DmaPusher& DmaPusher() {
        return *dma_pusher;
    }

    /// Returns a const reference to the GPU DMA pusher.
    [[nodiscard]] const Tegra::DmaPusher& DmaPusher() const {
        return *dma_pusher;
    }

    /// Returns a reference to the underlying renderer.
    [[nodiscard]] VideoCore::RendererBase& Renderer() {
        return *renderer;
    }

    /// Returns a const reference to the underlying renderer.
    [[nodiscard]] const VideoCore::RendererBase& Renderer() const {
        return *renderer;
    }

    /// Returns a reference to the shader notifier.
    [[nodiscard]] VideoCore::ShaderNotify& ShaderNotify() {
        return *shader_notify;
    }

    /// Returns a const reference to the shader notifier.
    [[nodiscard]] const VideoCore::ShaderNotify& ShaderNotify() const {
        return *shader_notify;
    }

    /// Allows the CPU/NvFlinger to wait on the GPU before presenting a frame.
    void WaitFence(u32 syncpoint_id, u32 value) {
        // Synced GPU, is always in sync
        if (!is_async) {
            return;
        }
        if (syncpoint_id == UINT32_MAX) {
            // TODO: Research what this does.
            LOG_ERROR(HW_GPU, "Waiting for syncpoint -1 not implemented");
            return;
        }
        MICROPROFILE_SCOPE(GPU_wait);
        std::unique_lock lock{sync_mutex};
        sync_cv.wait(lock, [=, this] {
            if (shutting_down.load(std::memory_order_relaxed)) {
                // We're shutting down, ensure no threads continue to wait for the next syncpoint
                return true;
            }
            return syncpoints.at(syncpoint_id).load() >= value;
        });
    }

    void IncrementSyncPoint(u32 syncpoint_id) {
        auto& syncpoint = syncpoints.at(syncpoint_id);
        syncpoint++;
        std::scoped_lock lock{sync_mutex};
        sync_cv.notify_all();
        auto& interrupt = syncpt_interrupts.at(syncpoint_id);
        if (!interrupt.empty()) {
            u32 value = syncpoint.load();
            auto it = interrupt.begin();
            while (it != interrupt.end()) {
                if (value >= *it) {
                    TriggerCpuInterrupt(syncpoint_id, *it);
                    it = interrupt.erase(it);
                    continue;
                }
                it++;
            }
        }
    }

    [[nodiscard]] u32 GetSyncpointValue(u32 syncpoint_id) const {
        return syncpoints.at(syncpoint_id).load();
    }

    void RegisterSyncptInterrupt(u32 syncpoint_id, u32 value) {
        std::scoped_lock lock{sync_mutex};
        auto& interrupt = syncpt_interrupts.at(syncpoint_id);
        bool contains = std::any_of(interrupt.begin(), interrupt.end(),
                                    [value](u32 in_value) { return in_value == value; });
        if (contains) {
            return;
        }
        interrupt.emplace_back(value);
    }

    [[nodiscard]] bool CancelSyncptInterrupt(u32 syncpoint_id, u32 value) {
        std::scoped_lock lock{sync_mutex};
        auto& interrupt = syncpt_interrupts.at(syncpoint_id);
        const auto iter =
            std::find_if(interrupt.begin(), interrupt.end(),
                         [value](u32 interrupt_value) { return value == interrupt_value; });

        if (iter == interrupt.end()) {
            return false;
        }
        interrupt.erase(iter);
        return true;
    }

    [[nodiscard]] u64 GetTicks() const {
        // This values were reversed engineered by fincs from NVN
        // The gpu clock is reported in units of 385/625 nanoseconds
        constexpr u64 gpu_ticks_num = 384;
        constexpr u64 gpu_ticks_den = 625;

        u64 nanoseconds = system.CoreTiming().GetGlobalTimeNs().count();
        if (Settings::values.use_fast_gpu_time.GetValue()) {
            nanoseconds /= 256;
        }
        const u64 nanoseconds_num = nanoseconds / gpu_ticks_den;
        const u64 nanoseconds_rem = nanoseconds % gpu_ticks_den;
        return nanoseconds_num * gpu_ticks_num + (nanoseconds_rem * gpu_ticks_num) / gpu_ticks_den;
    }

    [[nodiscard]] bool IsAsync() const {
        return is_async;
    }

    [[nodiscard]] bool UseNvdec() const {
        return use_nvdec;
    }

    void RendererFrameEndNotify() {
        system.GetPerfStats().EndGameFrame();
    }

    /// Performs any additional setup necessary in order to begin GPU emulation.
    /// This can be used to launch any necessary threads and register any necessary
    /// core timing events.
    void Start() {
        gpu_thread.StartThread(*renderer, renderer->Context(), *dma_pusher);
        cpu_context = renderer->GetRenderWindow().CreateSharedContext();
        cpu_context->MakeCurrent();
    }

    void NotifyShutdown() {
        std::unique_lock lk{sync_mutex};
        shutting_down.store(true, std::memory_order::relaxed);
        sync_cv.notify_all();
    }

    /// Obtain the CPU Context
    void ObtainContext() {
        cpu_context->MakeCurrent();
    }

    /// Release the CPU Context
    void ReleaseContext() {
        cpu_context->DoneCurrent();
    }

    /// Push GPU command entries to be processed
    void PushGPUEntries(Tegra::CommandList&& entries) {
        gpu_thread.SubmitList(std::move(entries));
    }

    /// Push GPU command buffer entries to be processed
    void PushCommandBuffer(u32 id, Tegra::ChCommandHeaderList& entries) {
        if (!use_nvdec) {
            return;
        }

        if (!cdma_pushers.contains(id)) {
            cdma_pushers.insert_or_assign(id, std::make_unique<Tegra::CDmaPusher>(gpu));
        }

        // SubmitCommandBuffer would make the nvdec operations async, this is not currently working
        // TODO(ameerj): RE proper async nvdec operation
        // gpu_thread.SubmitCommandBuffer(std::move(entries));
        cdma_pushers[id]->ProcessEntries(std::move(entries));
    }

    /// Frees the CDMAPusher instance to free up resources
    void ClearCdmaInstance(u32 id) {
        const auto iter = cdma_pushers.find(id);
        if (iter != cdma_pushers.end()) {
            cdma_pushers.erase(iter);
        }
    }

    /// Swap buffers (render frame)
    void SwapBuffers(const Tegra::FramebufferConfig* framebuffer) {
        gpu_thread.SwapBuffers(framebuffer);
    }

    /// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
    void FlushRegion(VAddr addr, u64 size) {
        gpu_thread.FlushRegion(addr, size);
    }

    /// Notify rasterizer that any caches of the specified region should be invalidated
    void InvalidateRegion(VAddr addr, u64 size) {
        gpu_thread.InvalidateRegion(addr, size);
    }

    /// Notify rasterizer that any caches of the specified region should be flushed and invalidated
    void FlushAndInvalidateRegion(VAddr addr, u64 size) {
        gpu_thread.FlushAndInvalidateRegion(addr, size);
    }

    void TriggerCpuInterrupt(u32 syncpoint_id, u32 value) const {
        auto& interrupt_manager = system.InterruptManager();
        interrupt_manager.GPUInterruptSyncpt(syncpoint_id, value);
    }

    void ProcessBindMethod(const GPU::MethodCall& method_call) {
        // Bind the current subchannel to the desired engine id.
        LOG_DEBUG(HW_GPU, "Binding subchannel {} to engine {}", method_call.subchannel,
                  method_call.argument);
        const auto engine_id = static_cast<EngineID>(method_call.argument);
        bound_engines[method_call.subchannel] = static_cast<EngineID>(engine_id);
        switch (engine_id) {
        case EngineID::FERMI_TWOD_A:
            dma_pusher->BindSubchannel(fermi_2d.get(), method_call.subchannel);
            break;
        case EngineID::MAXWELL_B:
            dma_pusher->BindSubchannel(maxwell_3d.get(), method_call.subchannel);
            break;
        case EngineID::KEPLER_COMPUTE_B:
            dma_pusher->BindSubchannel(kepler_compute.get(), method_call.subchannel);
            break;
        case EngineID::MAXWELL_DMA_COPY_A:
            dma_pusher->BindSubchannel(maxwell_dma.get(), method_call.subchannel);
            break;
        case EngineID::KEPLER_INLINE_TO_MEMORY_B:
            dma_pusher->BindSubchannel(kepler_memory.get(), method_call.subchannel);
            break;
        default:
            UNIMPLEMENTED_MSG("Unimplemented engine {:04X}", engine_id);
        }
    }

    void ProcessFenceActionMethod() {
        switch (regs.fence_action.op) {
        case GPU::FenceOperation::Acquire:
            WaitFence(regs.fence_action.syncpoint_id, regs.fence_value);
            break;
        case GPU::FenceOperation::Increment:
            IncrementSyncPoint(regs.fence_action.syncpoint_id);
            break;
        default:
            UNIMPLEMENTED_MSG("Unimplemented operation {}", regs.fence_action.op.Value());
        }
    }

    void ProcessWaitForInterruptMethod() {
        // TODO(bunnei) ImplementMe
        LOG_WARNING(HW_GPU, "(STUBBED) called");
    }

    void ProcessSemaphoreTriggerMethod() {
        const auto semaphoreOperationMask = 0xF;
        const auto op =
            static_cast<GpuSemaphoreOperation>(regs.semaphore_trigger & semaphoreOperationMask);
        if (op == GpuSemaphoreOperation::WriteLong) {
            struct Block {
                u32 sequence;
                u32 zeros = 0;
                u64 timestamp;
            };

            Block block{};
            block.sequence = regs.semaphore_sequence;
            // TODO(Kmather73): Generate a real GPU timestamp and write it here instead of
            // CoreTiming
            block.timestamp = GetTicks();
            memory_manager->WriteBlock(regs.semaphore_address.SemaphoreAddress(), &block,
                                       sizeof(block));
        } else {
            const u32 word{memory_manager->Read<u32>(regs.semaphore_address.SemaphoreAddress())};
            if ((op == GpuSemaphoreOperation::AcquireEqual && word == regs.semaphore_sequence) ||
                (op == GpuSemaphoreOperation::AcquireGequal &&
                 static_cast<s32>(word - regs.semaphore_sequence) > 0) ||
                (op == GpuSemaphoreOperation::AcquireMask && (word & regs.semaphore_sequence))) {
                // Nothing to do in this case
            } else {
                regs.acquire_source = true;
                regs.acquire_value = regs.semaphore_sequence;
                if (op == GpuSemaphoreOperation::AcquireEqual) {
                    regs.acquire_active = true;
                    regs.acquire_mode = false;
                } else if (op == GpuSemaphoreOperation::AcquireGequal) {
                    regs.acquire_active = true;
                    regs.acquire_mode = true;
                } else if (op == GpuSemaphoreOperation::AcquireMask) {
                    // TODO(kemathe) The acquire mask operation waits for a value that, ANDed with
                    // semaphore_sequence, gives a non-0 result
                    LOG_ERROR(HW_GPU, "Invalid semaphore operation AcquireMask not implemented");
                } else {
                    LOG_ERROR(HW_GPU, "Invalid semaphore operation");
                }
            }
        }
    }

    void ProcessSemaphoreRelease() {
        memory_manager->Write<u32>(regs.semaphore_address.SemaphoreAddress(),
                                   regs.semaphore_release);
    }

    void ProcessSemaphoreAcquire() {
        const u32 word = memory_manager->Read<u32>(regs.semaphore_address.SemaphoreAddress());
        const auto value = regs.semaphore_acquire;
        if (word != value) {
            regs.acquire_active = true;
            regs.acquire_value = value;
            // TODO(kemathe73) figure out how to do the acquire_timeout
            regs.acquire_mode = false;
            regs.acquire_source = false;
        }
    }

    /// Calls a GPU puller method.
    void CallPullerMethod(const GPU::MethodCall& method_call) {
        regs.reg_array[method_call.method] = method_call.argument;
        const auto method = static_cast<BufferMethods>(method_call.method);

        switch (method) {
        case BufferMethods::BindObject: {
            ProcessBindMethod(method_call);
            break;
        }
        case BufferMethods::Nop:
        case BufferMethods::SemaphoreAddressHigh:
        case BufferMethods::SemaphoreAddressLow:
        case BufferMethods::SemaphoreSequence:
            break;
        case BufferMethods::UnkCacheFlush:
            rasterizer->SyncGuestHost();
            break;
        case BufferMethods::WrcacheFlush:
            rasterizer->SignalReference();
            break;
        case BufferMethods::FenceValue:
            break;
        case BufferMethods::RefCnt:
            rasterizer->SignalReference();
            break;
        case BufferMethods::FenceAction:
            ProcessFenceActionMethod();
            break;
        case BufferMethods::WaitForInterrupt:
            rasterizer->WaitForIdle();
            break;
        case BufferMethods::SemaphoreTrigger: {
            ProcessSemaphoreTriggerMethod();
            break;
        }
        case BufferMethods::NotifyIntr: {
            // TODO(Kmather73): Research and implement this method.
            LOG_ERROR(HW_GPU, "Special puller engine method NotifyIntr not implemented");
            break;
        }
        case BufferMethods::Unk28: {
            // TODO(Kmather73): Research and implement this method.
            LOG_ERROR(HW_GPU, "Special puller engine method Unk28 not implemented");
            break;
        }
        case BufferMethods::SemaphoreAcquire: {
            ProcessSemaphoreAcquire();
            break;
        }
        case BufferMethods::SemaphoreRelease: {
            ProcessSemaphoreRelease();
            break;
        }
        case BufferMethods::Yield: {
            // TODO(Kmather73): Research and implement this method.
            LOG_ERROR(HW_GPU, "Special puller engine method Yield not implemented");
            break;
        }
        default:
            LOG_ERROR(HW_GPU, "Special puller engine method {:X} not implemented", method);
            break;
        }
    }

    /// Calls a GPU engine method.
    void CallEngineMethod(const GPU::MethodCall& method_call) {
        const EngineID engine = bound_engines[method_call.subchannel];

        switch (engine) {
        case EngineID::FERMI_TWOD_A:
            fermi_2d->CallMethod(method_call.method, method_call.argument,
                                 method_call.IsLastCall());
            break;
        case EngineID::MAXWELL_B:
            maxwell_3d->CallMethod(method_call.method, method_call.argument,
                                   method_call.IsLastCall());
            break;
        case EngineID::KEPLER_COMPUTE_B:
            kepler_compute->CallMethod(method_call.method, method_call.argument,
                                       method_call.IsLastCall());
            break;
        case EngineID::MAXWELL_DMA_COPY_A:
            maxwell_dma->CallMethod(method_call.method, method_call.argument,
                                    method_call.IsLastCall());
            break;
        case EngineID::KEPLER_INLINE_TO_MEMORY_B:
            kepler_memory->CallMethod(method_call.method, method_call.argument,
                                      method_call.IsLastCall());
            break;
        default:
            UNIMPLEMENTED_MSG("Unimplemented engine");
        }
    }

    /// Calls a GPU engine multivalue method.
    void CallEngineMultiMethod(u32 method, u32 subchannel, const u32* base_start, u32 amount,
                               u32 methods_pending) {
        const EngineID engine = bound_engines[subchannel];

        switch (engine) {
        case EngineID::FERMI_TWOD_A:
            fermi_2d->CallMultiMethod(method, base_start, amount, methods_pending);
            break;
        case EngineID::MAXWELL_B:
            maxwell_3d->CallMultiMethod(method, base_start, amount, methods_pending);
            break;
        case EngineID::KEPLER_COMPUTE_B:
            kepler_compute->CallMultiMethod(method, base_start, amount, methods_pending);
            break;
        case EngineID::MAXWELL_DMA_COPY_A:
            maxwell_dma->CallMultiMethod(method, base_start, amount, methods_pending);
            break;
        case EngineID::KEPLER_INLINE_TO_MEMORY_B:
            kepler_memory->CallMultiMethod(method, base_start, amount, methods_pending);
            break;
        default:
            UNIMPLEMENTED_MSG("Unimplemented engine");
        }
    }

    /// Determines where the method should be executed.
    [[nodiscard]] bool ExecuteMethodOnEngine(u32 method) {
        const auto buffer_method = static_cast<BufferMethods>(method);
        return buffer_method >= BufferMethods::NonPullerMethods;
    }

    struct Regs {
        static constexpr size_t NUM_REGS = 0x40;

        union {
            struct {
                INSERT_PADDING_WORDS_NOINIT(0x4);
                struct {
                    u32 address_high;
                    u32 address_low;

                    [[nodiscard]] GPUVAddr SemaphoreAddress() const {
                        return static_cast<GPUVAddr>((static_cast<GPUVAddr>(address_high) << 32) |
                                                     address_low);
                    }
                } semaphore_address;

                u32 semaphore_sequence;
                u32 semaphore_trigger;
                INSERT_PADDING_WORDS_NOINIT(0xC);

                // The pusher and the puller share the reference counter, the pusher only has read
                // access
                u32 reference_count;
                INSERT_PADDING_WORDS_NOINIT(0x5);

                u32 semaphore_acquire;
                u32 semaphore_release;
                u32 fence_value;
                GPU::FenceAction fence_action;
                INSERT_PADDING_WORDS_NOINIT(0xE2);

                // Puller state
                u32 acquire_mode;
                u32 acquire_source;
                u32 acquire_active;
                u32 acquire_timeout;
                u32 acquire_value;
            };
            std::array<u32, NUM_REGS> reg_array;
        };
    } regs{};

    GPU& gpu;
    Core::System& system;
    std::unique_ptr<Tegra::MemoryManager> memory_manager;
    std::unique_ptr<Tegra::DmaPusher> dma_pusher;
    std::map<u32, std::unique_ptr<Tegra::CDmaPusher>> cdma_pushers;
    std::unique_ptr<VideoCore::RendererBase> renderer;
    VideoCore::RasterizerInterface* rasterizer = nullptr;
    const bool use_nvdec;

    /// Mapping of command subchannels to their bound engine ids
    std::array<EngineID, 8> bound_engines{};
    /// 3D engine
    std::unique_ptr<Engines::Maxwell3D> maxwell_3d;
    /// 2D engine
    std::unique_ptr<Engines::Fermi2D> fermi_2d;
    /// Compute engine
    std::unique_ptr<Engines::KeplerCompute> kepler_compute;
    /// DMA engine
    std::unique_ptr<Engines::MaxwellDMA> maxwell_dma;
    /// Inline memory engine
    std::unique_ptr<Engines::KeplerMemory> kepler_memory;
    /// Shader build notifier
    std::unique_ptr<VideoCore::ShaderNotify> shader_notify;
    /// When true, we are about to shut down emulation session, so terminate outstanding tasks
    std::atomic_bool shutting_down{};

    std::array<std::atomic<u32>, Service::Nvidia::MaxSyncPoints> syncpoints{};

    std::array<std::list<u32>, Service::Nvidia::MaxSyncPoints> syncpt_interrupts;

    std::mutex sync_mutex;
    std::mutex device_mutex;

    std::condition_variable sync_cv;

    struct FlushRequest {
        explicit FlushRequest(u64 fence_, VAddr addr_, std::size_t size_)
            : fence{fence_}, addr{addr_}, size{size_} {}
        u64 fence;
        VAddr addr;
        std::size_t size;
    };

    std::list<FlushRequest> flush_requests;
    std::atomic<u64> current_flush_fence{};
    u64 last_flush_fence{};
    std::mutex flush_request_mutex;

    const bool is_async;

    VideoCommon::GPUThread::ThreadManager gpu_thread;
    std::unique_ptr<Core::Frontend::GraphicsContext> cpu_context;

#define ASSERT_REG_POSITION(field_name, position)                                                  \
    static_assert(offsetof(Regs, field_name) == position * 4,                                      \
                  "Field " #field_name " has invalid position")

    ASSERT_REG_POSITION(semaphore_address, 0x4);
    ASSERT_REG_POSITION(semaphore_sequence, 0x6);
    ASSERT_REG_POSITION(semaphore_trigger, 0x7);
    ASSERT_REG_POSITION(reference_count, 0x14);
    ASSERT_REG_POSITION(semaphore_acquire, 0x1A);
    ASSERT_REG_POSITION(semaphore_release, 0x1B);
    ASSERT_REG_POSITION(fence_value, 0x1C);
    ASSERT_REG_POSITION(fence_action, 0x1D);

    ASSERT_REG_POSITION(acquire_mode, 0x100);
    ASSERT_REG_POSITION(acquire_source, 0x101);
    ASSERT_REG_POSITION(acquire_active, 0x102);
    ASSERT_REG_POSITION(acquire_timeout, 0x103);
    ASSERT_REG_POSITION(acquire_value, 0x104);

#undef ASSERT_REG_POSITION

    enum class GpuSemaphoreOperation {
        AcquireEqual = 0x1,
        WriteLong = 0x2,
        AcquireGequal = 0x4,
        AcquireMask = 0x8,
    };
};

GPU::GPU(Core::System& system, bool is_async, bool use_nvdec)
    : impl{std::make_unique<Impl>(*this, system, is_async, use_nvdec)} {}

GPU::~GPU() = default;

void GPU::BindRenderer(std::unique_ptr<VideoCore::RendererBase> renderer) {
    impl->BindRenderer(std::move(renderer));
}

void GPU::CallMethod(const MethodCall& method_call) {
    impl->CallMethod(method_call);
}

void GPU::CallMultiMethod(u32 method, u32 subchannel, const u32* base_start, u32 amount,
                          u32 methods_pending) {
    impl->CallMultiMethod(method, subchannel, base_start, amount, methods_pending);
}

void GPU::FlushCommands() {
    impl->FlushCommands();
}

void GPU::SyncGuestHost() {
    impl->SyncGuestHost();
}

void GPU::OnCommandListEnd() {
    impl->OnCommandListEnd();
}

u64 GPU::RequestFlush(VAddr addr, std::size_t size) {
    return impl->RequestFlush(addr, size);
}

u64 GPU::CurrentFlushRequestFence() const {
    return impl->CurrentFlushRequestFence();
}

void GPU::TickWork() {
    impl->TickWork();
}

Engines::Maxwell3D& GPU::Maxwell3D() {
    return impl->Maxwell3D();
}

const Engines::Maxwell3D& GPU::Maxwell3D() const {
    return impl->Maxwell3D();
}

Engines::KeplerCompute& GPU::KeplerCompute() {
    return impl->KeplerCompute();
}

const Engines::KeplerCompute& GPU::KeplerCompute() const {
    return impl->KeplerCompute();
}

Tegra::MemoryManager& GPU::MemoryManager() {
    return impl->MemoryManager();
}

const Tegra::MemoryManager& GPU::MemoryManager() const {
    return impl->MemoryManager();
}

Tegra::DmaPusher& GPU::DmaPusher() {
    return impl->DmaPusher();
}

const Tegra::DmaPusher& GPU::DmaPusher() const {
    return impl->DmaPusher();
}

VideoCore::RendererBase& GPU::Renderer() {
    return impl->Renderer();
}

const VideoCore::RendererBase& GPU::Renderer() const {
    return impl->Renderer();
}

VideoCore::ShaderNotify& GPU::ShaderNotify() {
    return impl->ShaderNotify();
}

const VideoCore::ShaderNotify& GPU::ShaderNotify() const {
    return impl->ShaderNotify();
}

void GPU::WaitFence(u32 syncpoint_id, u32 value) {
    impl->WaitFence(syncpoint_id, value);
}

void GPU::IncrementSyncPoint(u32 syncpoint_id) {
    impl->IncrementSyncPoint(syncpoint_id);
}

u32 GPU::GetSyncpointValue(u32 syncpoint_id) const {
    return impl->GetSyncpointValue(syncpoint_id);
}

void GPU::RegisterSyncptInterrupt(u32 syncpoint_id, u32 value) {
    impl->RegisterSyncptInterrupt(syncpoint_id, value);
}

bool GPU::CancelSyncptInterrupt(u32 syncpoint_id, u32 value) {
    return impl->CancelSyncptInterrupt(syncpoint_id, value);
}

u64 GPU::GetTicks() const {
    return impl->GetTicks();
}

bool GPU::IsAsync() const {
    return impl->IsAsync();
}

bool GPU::UseNvdec() const {
    return impl->UseNvdec();
}

void GPU::RendererFrameEndNotify() {
    impl->RendererFrameEndNotify();
}

void GPU::Start() {
    impl->Start();
}

void GPU::NotifyShutdown() {
    impl->NotifyShutdown();
}

void GPU::ObtainContext() {
    impl->ObtainContext();
}

void GPU::ReleaseContext() {
    impl->ReleaseContext();
}

void GPU::PushGPUEntries(Tegra::CommandList&& entries) {
    impl->PushGPUEntries(std::move(entries));
}

void GPU::PushCommandBuffer(u32 id, Tegra::ChCommandHeaderList& entries) {
    impl->PushCommandBuffer(id, entries);
}

void GPU::ClearCdmaInstance(u32 id) {
    impl->ClearCdmaInstance(id);
}

void GPU::SwapBuffers(const Tegra::FramebufferConfig* framebuffer) {
    impl->SwapBuffers(framebuffer);
}

void GPU::FlushRegion(VAddr addr, u64 size) {
    impl->FlushRegion(addr, size);
}

void GPU::InvalidateRegion(VAddr addr, u64 size) {
    impl->InvalidateRegion(addr, size);
}

void GPU::FlushAndInvalidateRegion(VAddr addr, u64 size) {
    impl->FlushAndInvalidateRegion(addr, size);
}

} // namespace Tegra